TEST-I-2018-19- class -XII- Sub-Mathematics
Solutions:
$A = [aij]_{1\times 2} = [aii \ ai2]$
Here $acj = c - j^2$. $an = l - l^2 = 0$
$412 = 1 - 2^{2} = -3.$
$A = \begin{bmatrix} 0 & -3 \end{bmatrix} Ans$
(=1 m2) m2 = (= cq1) m2 (= 1)
$\chi^2 = (\chi \chi)^2 (: \chi = \chi \chi \text{ given})$
$= \times Y \times Y$
= XYY (: YX=Ygiren)
= XY (= X=XY given)
= X (': X = XY given)
= X2 = X . Hence Proved
$A = \begin{bmatrix} -1 & 1 \end{bmatrix} \Rightarrow A^{T} = \begin{bmatrix} -1 & a \end{bmatrix}$
= AAT = [-1 1][-1 a]
$= \begin{bmatrix} 2 & -\alpha+1 \\ -\alpha+1 & \alpha^2+1 \end{bmatrix}$
AA^{T} is a scalar matrix = $\lambda = a^{2}+1$ $\xi - a+1=0$
$= \frac{a^2-1}{4} + \frac{a-1}{4}$ $= \frac{a-1}{4} + \frac{a-1}{4}$
$4) A - bT - \left[-2 - 3\right] - \left[b 0\right] \qquad = q = 1 \text{ Aws}.$
$\begin{array}{c} 4 \end{array} \bigg) \qquad \begin{array}{c} A - k \mathbb{I} = \begin{bmatrix} -2 & -3 \\ -1 & 2 \end{bmatrix} - \begin{bmatrix} k & 0 \\ 0 & k \end{bmatrix} \end{array}$
= [-2-k -3]
$ = \begin{bmatrix} -\lambda - k & -3 \\ -1 & \lambda - k \end{bmatrix} $
A-kI has no inverse = A-kI = 0
= (-2-k)(2-k) - 3 = 0
$= 4 + 2k - 2k + k^2 - 3 = 0$

```
=1 k^2 - 7 = 0
                       k= + vg Ans
         tan (105-12) = ein (101-11/2)
         = tan (tan-1 \( \tan-1 \) = ein (cin-1 &
                                                    tan (cos /x) = sin (sin 12
          = 5(1-x2) = 4x2
             = 5= 922
                 01 7 = + V5 Am
            Yes * on I + is a kinary operation = a * b
                                                           i.e a+bEX+
                                                              + a,b E X+
           Let e E Z+ be the identity elt for * on Z+
                         a* e = e * a = a
                       e=0 f z+
id elt does not-exist for x on z+
                             inverse also does not exist for * on I+
             \log_e(x-y) e^{\frac{2}{n-y}} = \log_e a
= \log_e(x-y) + \left(\frac{2}{n-y}\right) \log_e e = \log_e a
          \Rightarrow = loge(x-y) + \frac{\pi}{\pi - y} = loge 9
wiff n b/s w.r.t'x' we get:
```

$$\frac{1}{100} \frac{1}{100} \frac{1$$

$=1 LHS = \frac{a^2 + b^2}{4 \left(a\cos a + b\cos a\right)^2 + \left(a\sin a - b\cos a\right)}$
- (+alin a -b losa) acin a-biosa
$= -(a^2+b^2) + (a\cos 0 + b\sin 0)^2 + (a\sin 0 - b\cos 0)^2$ $(a\sin 0 - b\cos 0)$
$= -(a^{2}+b^{2}) + (a^{2}\cos^{2}a + b^{2}\sin^{2}a + 2ab & cono (on a) + (a & cono - b & cono)^{2}$
(-acin 0 + b cos a)
$= -\left(a^2 + b^2\right) + \left(a^2 \cos^2 a + b^2 \sin^2 a + 2ab \cos a\right)$
$\frac{+ a^2 e in^2 o + b^2 cos^2 o - 2ab e initiono}{(-a vinio + b coso)}$
$= -a^2 - b^2 + a^2 + b^2 = 0 + m$
-asin atbiso.
All John Q9
$\frac{dy}{dx} = \frac{dy}{dx} \frac{d\theta}{dx} = \frac{a\cos\theta + b\sin\theta}{-a\sin\theta + b\cos\theta} = x$
$\frac{1}{dx^2} = \frac{-y(1)}{-x(-\frac{dy}{dx})}$
Qn2 y2.
$\frac{d^2y}{dn^2} = -1 + n dy$
$\Rightarrow \int y^2 d^2y - x dy + y = 0$
da da Ans.
-2-22 -22

-	V
H=	
-	
-	
and a	
_	
_	
_	
_	
	10) A(2) = 1 2 2+1
wings (managements)	22 2(n-1) 2(n+1)
-	$3x(x-1)$ $x(x-1)(x-2)$ $x(x^2-1)$
	Taking (2-1) Lommon from R3:
, where the common	$\Delta(x) = 1$ x $x + 1$
· · · · · · · · · · · · · · · · · · ·	(2-1) 22 2(2-1) 2(2+1) 32 2(2-2) 2(2+1) (2+1) (2+1) (3mmon from (3
-	Laking & tommon from (2 & (2L+1) tommon from (3
	$\Delta(n) = (n-1) \times (n+1) $
	32 7-2 2
	$C_3 \rightarrow C_3 - C_1 4 C_2 \rightarrow C_2 - C_1$ $\Delta(x) = \pi(x^2 - 1) \begin{vmatrix} 1 & 0 & 0 \\ 2x & -1 - x & -x \\ 3x & -2 - 2x & -2x \end{vmatrix}$
	$21(x) = x(x^{-1}) 2x -1-x -x$
÷	32 -2-22 -221

Expalong R1:	198
$A(n) = n(n^2 - 1) $	
Taking a common from Cz:	
$\Delta(n) = n^2 (n^2 - 1) - 1 - x - 1$ $-2 - 2n - 2$	
· A(10)=0 Ans	
OR.	1 11
The given eystem of egns can be expressed as: $AX = B \text{ where } A = \begin{bmatrix} 1 & 2 & 1 \\ -1 & 1 & 1 \\ 1 & -3 & 1 \end{bmatrix}, X = \begin{bmatrix} x & y \\ y & 1 \\ 3 & 3 & 3 \end{bmatrix}$	4B= 4 0 4
Here [A]= !(1+3)-2(-1-1)+1(3-1) = 4+4+2	
= 10 \pm 0 \Rightarrow given eighten of egms is consistent with a unique colu	W-1001
given by = X = A-B	
To find A-1 C11 = 4 C12 = 2 C13 = 2	
C31= -5 C22= 0 C23= 5 C31= 1 C32= -2 C33= 3.	
$Ady^{A} = C^{T} = \begin{bmatrix} 4 & -5 & 1 \\ 2 & 0 & -2 \\ 2 & 5 & 3 \end{bmatrix}$	

x 9	$A^{-1} = AoyA = 1 \begin{bmatrix} 4 & -5 & 1 \\ 2 & 0 & -2 \\ 2 & 5 & 3 \end{bmatrix}$
	$= X = A^{-1} B$
	$ \begin{array}{c cccc} \alpha & \begin{array}{c} 1 \\ $
	$ \begin{array}{c c} \Rightarrow & \begin{pmatrix} \chi \\ y \end{pmatrix} = \frac{1}{10} \begin{pmatrix} 20 \\ 0 \\ 20 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ 2 \end{pmatrix} $
	=1 (2=2, y=0 & 3=2) Ans.
П	Here $f(x) = x + 1$

	$\exists \qquad \forall = \frac{\chi^2 + 1}{\chi}$
	$\exists \pi y = \pi^2 + 1$
	$= \frac{1}{2} \frac{1}{2} - \frac{1}{2} \frac{1}{2} + 1 = 0$
	$= \frac{x^2 - xy + 1 = 0}{4 + \sqrt{y^2 - y}}$
	2.
encitaria facca e i fato e 400 h. el . el	
	$x = y + \sqrt{y^2 - 4} \in [1, \infty)$
	g ·
	$= \forall y \in [2, \infty) \exists x \in [1, \infty)$
	= +y = [2, \infty) \forall n = [1, \infty) i.e + ell in the codomain \forall a px-1 mage in the domain = \int is onto
V 40°	= f is onto = f is one-one onto = f = exists & is defined as:
	- j is one one one = j 6 exists & is defined as.
	$[-1:[2,\infty) \rightarrow [1,\infty)$
	s.t. $\int_{-1}^{-1} (x) = x + \sqrt{x^2 - 4}$ Ans:
	2
٠, ٦	UK
1)_70	eflexivity: (a1b) R (a1b) : ab=ba + (a1b) EAX:
ii)	Symmetry: Let (aib) R(cid) ; aibicidEA
<i>y</i> _	= ad $=$ bc
	= $da = cb$
	= cb = da
THE RESIDENCE OF THE PERSON OF	= (cid) R(a,b)
THE REAL PROPERTY AND ADDRESS OF THE REAL PROPERTY AND	= Rio lymmetric

(iii) Francitivity: Let (a,b) R (c,d) & (c,d) R(e,b); a,b,c,d,e,b = ad=bc & cf=de EA = adcf = bcde = af = be = (a,b) R (e,b)
Lunce Rio reflexive, symmetric & transitive
Lunce Rio reflexive, symmetrie & transitive = Rio an equivalence relation.
For Equivalence class of (3,2):
$= \frac{3\chi = 3\gamma}{3}$
: Equivalence class of (3,2) is: [(3,2), (6,4), (9,6), (12,8), (15, 10), (18,12)] Ans.

1